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MECHANICAL IMPEDANCE AND MOBILITY,
USEFUL BUT UNUSED

INTRODUCTION

This paper discusses mechanical impedance and mobility concepts. It points out the definite advantage of using
mobility instead of mechanical impedance for mechanical systems. Mobility retains the essential character of
a mechanical system, parallel systems remain parallel, etc., even after the transformation to standard “lumped”
values. The lumped value system may be solved by electrical engineering mathematical methods. Measurements
are simply made with dynamic force gages, accelerometers and phase meters.

The concept of mobility makes possible the straightforward analysis of complex structures under dynamic
loading. The measurement of dynamic forces and motions is analogous to that of electronic impedance measure-
ment. Acceleration measured at a point in a structure and compared to the driving force and frequency will
indicate the lumped constants of Mass, Spring and Damping. Further analysis makes possible the design of
mountings for idealized impedance matching or mismatching to the supporting structure, whose character-
istics have been measured in the same manner. Furthermore, the knowledge of the lumped dynamic constants
for any complex structure at given frequencies makes it possible to predict accurately the response of that
system under varying conditions. One application of this concept is the measurement of dynamic forces in large
rotating equipment so as to easily determine proper design criteria.

MECHANICAL IMPEDANCE AND MORBILITY,
USEFUL BUT UNUSED

Four steps are presented for effective utilization of
the analogy method of vibration analysis. These
steps are: (1) selection of the proper set of equa-
tions; (2) transformation of an actual system to a
lumped value system; (3) measurement of the system
constants over the applicable frequency range; (4)
solution of equations. The problems present in the
transformation of a simple distributed system are
illustrated by an example. Equations for electrical,
mechanical, acoustical and hydraulic systems are
presented. A complete derivation of mechanical
mobility is presented along with a problem in this
field.

Most engineers are familiar with the concept of
applying solutions of one field to the problems of
another by use of analogous transformations. Un-
fortunately, this powerful technique has not been
used to any great extent on the complex problems of
present day vibration analysis. Some reason for this
lack of application can be found in the system trans-
formation that has been taught in colleges, which is
not an easily visualized one. It has also been difficult
to check if the schematic representation of any sys-
tem is a correct one. This paper presents a simple
method of system transformations and also includes
a glimpse of new aids to vibration analysis due to
recent advances in instrumentation.

If the differential equation of one system is identical
in form to the differential equation of any other
system, then the solution of the first system equa-
tion may be used as the solution of the second sys-
tem with just a change of constants. A change from
one system to another with the same equation form
is a system transformation. In practice, there exists
two types of transformations—one is a dual trans-
formation and the other is an analogous transforma-
tion. A simple dual transformation within a
mechanical system is illustrated.in Figure 1 and a
similar transformation in an electrical system is
shown in Figure 2, The best use of the dual trans-
formation is to change one type of generator to a
more familiar or easily workable one, such as the
current generator to voltage generator change in
Figure 2. An analogous transformation from one
system to another must preserve the visual similarity
of system schematics. This is the correspondence
between Figures 1la and 2a or 1b and 2b.

The classical textbook analogy, which is a combined
analogous and dual transformation, is between Fig-
ures la and 2b or 1b and 2a. This confusing practice
came about due to the mathematically indefensible
belief that an electromotive force should be the
analog of a mechanical force. An analogous trans-
formation is much superior to a dual transformation,
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both from the standpoint of easy visualization and
the mathematical treatment of the boundary condi-
tions of the original system.

A basic understanding of system transformations
may be obtained by considering the action of system
variables at a junction within the system. In an ideal
mechanical system this junction is a point from
which three or more massless, infinitely rigid bars
radiate; in an electrical system it is a node or june-
tion of three or more ideal conductors; and in a
hydraulic or acoustic system it is a chamber with
three or more tubes leading from it. Velocity in a
mechanical system can be called an “across” variable
since the velocity of a bar from one side of the june-
tion must be the same as a bar from the other side
of the junction as long as the velocities are measured
in the same direction. Voltage in the electrical sys-
tem must always be the same in any conductor
running from the junction. A hydraulic or acoustic
system has equal pressures in tubes from the junc-
tion. The other variable in each of the above, sys-
tems will change at the junction and can be called
the “through” variable, “Through’” variables in the
various systems are: force in mechanics; current in
electrical circuits; and flow rate in hydraulics or
acoustics. Listed below are the differential equations
for the various systems with the “across” variable
equation given first in each set.

1. ELECTRICAL

di . 1 .
A Lg+Ri+o [ idt=v (@
dv 1 1 .
B. C'(R'f‘iv-l-'rb—f vdt =1 (t)

2. MECHANICAL

1 df 1 1
dv
B. M-+ Dv+K [ vdt = £ (t)

3. HYDRAULIC

A. Mg—:+an+%fvdt=p(t)
B. cj—i+ﬁp+%ﬁ—f pdt = v (t)
4. ACOUSTIC
A M-‘(’i—}t(—+RAx+ciAf Xdt = P (t)

dP 1 1
B. cA-dt—+RTP+ﬁdet=X(t)

Now that the system variables and equations have
been considered, it is necessary to inspect the system
references. The reference for mechanical systems is
the ground which has infinite impedance and mass.
Hydraulic and acoustic systems have the open sky
as reference which has zero impedance and infinite
compliance. This difference in primary references
gives rise to two different ways of visualizing the
system schematics. One way is to use the admittance
of each element as referred to ground and the other
is to use the impedance of an element as referred to
ground. Since mechanical ground has an infinite
impedance, it must have a zero admittance. Unfor-
tunately, there is a problem in language at this
point. Mechanical admittance is historically defined
as Y, = v (through)/f (across). This is not what
was shown to be true of a mechanical system where
velocity is an across variable and force is a through
variable. The reason for this lack of correspondence
is that mechanical admittance really belongs in a
hydraulic system while a new term, mechanical mo-
bility, which was coined by F. A. Firestone and is
defined as z = v (across)/f (through), is the cor-
rect method of analysis for a mechanical system.
Hydraulic or acoustic systems have zero impedance
references, such as the sky or a lake at zero eleva-
tion, so these systems present no ingrained difficul-
ties in schematic representation using electrical
impedances. Figure 3 shows a mechanical system
and an acoustical system, each with an “across”
variable generator and each transformed to an elec-
trical schematic. The dual systems for those shown
in Figure 3 are given in Figure 4. It should be noted
here that an analogous transformation must be made
with care since system non-linearities may not be
recognized and included in the transformation.

Mechanical mobility is not a new development since
it was introduced in 1933, but it has not received
much notice until recently. As stated earlier, the
basic definition of mechanical mobility is: z=1v
(across) /f (through), where v is analogous to volt-
age and f is analogous to current. Since most me-
chanical systems are analyzed by using a force
generator, they tend to have mechanical schematics
like that in Figure 5. Equations 1A and 1B are the
analogous equations for this problem and the sche-
matic values in Figure 6 are derived from these
equations. The actual mobilities of single elements
are derived below.

Basic Symbols:

Spring Damper or friction Mass

‘-——Q)%m—-b a._\/\/r{/\/\_.b ao-—-l:: ||I

Note: A mass only has one terminal since the inertia
force is absolute with respect to ground.



Mobility of a spring:
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Mobility of a mass:

f= d’c" V‘"f

z_1",e“" % 1 1
T ieM 7 fele T M

A direct system solution is possible without a trans-
" formation. The mechanical schematic of Figure 5b
can be converted into algebraic equations quite ra-
pidly by use of the mobilities of its elements. The
mobility of point A is:

7. = 1 _ 1

AT 1 1 1 1 1 1
ot ot T e+ 1
Dy K M; + v + 1

D, k  ioM,
The mobility of point B is:

1
1 1 1
st

Zp, Zy,

The above mobility development and problem solu-
tion is only valid for systems where the driving
force varies sinusoidally. However, by application of
a Fouier series ‘this restriction is nearly removed.
The use of an imaginary coordinate was deliberate
since the imaginary part represents recoverable
power and the real part represents dissipated power.

All of the preceding material may be found in one
or more reference books and this information allows
an engineer to make transformations in simple sys-
tems. There are four steps necessary to effectively
utilize the analogy method of analysis. These steps
are: (1) selection of the proper system equations,
(2) transformation of the actual system to a lumped
value system; (3) measurement of the system con-
stants; (4) solution of the equations. The first step
of selecting the proper system equations has been
covered and is not too difficult once the underlying
principles are understood. Step number two is one
which is very conveniently glossed over in every
book in the field. At present the general method of
transformation consists of drawing a system sche-
matic using past experience as a guide and then

measuring static system values. This kind of ap-
proach may eventually lead to correct answers after
numerous tries but it certainly is not good enough
for use on a complex problem. An obvious need is
some means of taking the guesswork out of system
transformation and the measurement of system
constants.

Instrumentation has been developed to accurately
measure the magnitude of mechanical mobility or
impedance and also their phase angles with respect
to the driving frequency. After plots have been
made of these quantities versus forcing frequency,
then an electrical schematic can be derived by curve
matching. This method leaves something to be de-
sired since it may be difficult to find the electrical
system which will satisfy the plotted curve. The
only way around this problem is the use of an
approximate mechanical schematic as a guide. Us-
ually enough information may be derived from the
mechanical schematic to obtain the correct electrical
schematic. The best feature of this method is its
complete generality and flexibility of application
since a prototype model or a finished unit may be
measured regardless of complexity. With really com-
plex systems it may even be possible to let a com-
puting machine do the curve matching. Step number
three, the measurement of system constants, has
already been discussed and an adequate solution to
the problem is available. The last step of problem
solution is fairly straightforward unless the mathe-
matics gets a little difficult due to non-sinusoidal
input conditions or non-linear system character-
istics. This is the place where advanced electric cir-
cuit theory is very useful. La Place transforms,
Heaviside operational calculus and switching circuit
transient solutions are just some of the powerful
tools available in the electrical field.

A great deal of effort has been expended in obtain-
ing a solution technique for vibration problems.
The question now is what can be accomplished with
the technique. If an undesirable system resonance
or antiresonance must be reduced or removed, it is
difficult to decide which part of the system must be
modified so that no desirable characteristics of the
system are lost. There are many techniques in elec-
trical circuit theory which show the effect on a
system of the variation of single circuit elements.
Another method of attack is to filter out the unde-
sirable frequency range with an electrical filter and
then transform the filter to its mechanical or hydrau-
lic equivalent. Designers can look up or develop by
breadboards an electrical circuit which has any de-
sired frequency response. A simple transformation
to the proper system and a whole program of ex-
pensive model building is rendered unnecessary. One
of the most difficult problems at present is that of
high frequency mechanical, acoustical or hydraulic
systems. All of these systems have to be handled as
distributed systems instead of lumped systems even
at fairly moderate frequencies. Here again, the work



done on distributed electrical systems such as trans-
mission lines or high frequency antennas can be of
enormous value to the designer. Figure 7a shows a
simple mechanical system, Figure 7b is the usual
low frequency schematic and Figure 7c illustrates
some of the modifications that may be necessary at
higher operating frequencies. In Figure 7b the
actual system spring of 7a can be shown as an
idealized spring since its mass is small and the mass
of the actual system is not too large so it can be
considered a mobile element. When the forcing fre-
quency rises the mobility equations that were de-
rived earlier show what will happen. First, z, = %’
indicates that the spring will become very compliant.

Second, z,, = ﬁindicates that the large mass will
.

look like ground and the previously negligible mass
of the spring must be considered. The inherent
damping of the spring material will also be of inter-
est. Figure 7c is the schematic of the high frequency
system.

One possibility of systems has not been mentioned
so far and this is the interaction of two or more

systems in the same design. Multiple systems are an
everyday design problem since a simple product like
a loudspeaker is really an electro-mechanical-acous-
tical system. Obviously there must be some provision
made for coupling these different systems. The
theory of system coupling is fairly recent and F. A.
Firestone has published an excellent article on sys-
tem ‘“meshers” in “The Journal of the Acoustical
Society of America.” If space permitted, it would
be very illuminating to show these “meshers” and
some of the other highly technical aspects of system
transformations.

This paper was written to acquaint engineers with
recent advances in the field of analogous transforma-
tions as they might be applied to present design
problems. The more difficult mathematical treat-
ments and some necessary but highly theoretical
concepts have not been included for lack of space,
but all of this material can be found in the refer-
ences. If the concept of dual and analogous trans-
formations has been clarified or the information on
mobility and new problem approaches has aroused
interest, then this paper has accomplished its
purpose.
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